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1.  INTRODUCTION 
 

Modeling of real systems relies on the arduous task of describing the physical phenomena in 

terms of mathematical models, which often require excessive amounts of computation time 

when used in simulations.  In the last few years there has been a growing acceptance of 

model abstraction whose emphasis rests on the development of more manageable models.  

Abstraction refers to the intelligent capture of the essence of the behavior of a model, without 

all the details.  In the past, model abstraction techniques have been applied to complex 

models, such as Advanced Low Altitude Radar Model (ALARM) to simplify analysis. The 

scope of this effort is to apply model abstraction techniques to ALARM; a DoD prototype 

radar model for simulating the volume detection capability of low flying targets within a 

digitally simulated environment. Due to the complexity of these models it is difficult to 

capture and assess the relationship between the model parameters and the performance of the 

simulation. Under this effort ALARM parameters were modified and/or deleted and the 

impact on the simulation run time assessed.  In addition, several meta-models were developed 

and used to assess the impact of ALARM parameters on the simulation run time. This paper 

establishes a baseline for ALARM from which additional meta-models can be compared and 

analyzed.  

 

ALARM is a generic digital computer simulation designed to evaluate the capability of a ground-

based radar system to detect low altitude targets[1].  The ALARM simulation incorporates four 

highly detailed models which the user can modify in great detail by varying multiple parameters. 

The four models are a radar model, atmospheric model, terrain model, and target model.   

ALARM simulates both Pulsed Doppler (PD) and Moving Target Indication (MTI) radar systems. 

A limited capability to model Continuous Wave (CW) radar is also available. ALARM can 

operate in either a Flight Path Analysis (FPA) mode or Detection Contour (DC) mode. In the FPA 

mode, ALARM requires aircraft flight data parameters to be input, and detection is determined for 

each defined data point along a single north to south straight-line flight path going from left to 

right across the radar site. The DC mode is used to more generically illustrate the radar’s detection 

performance. ALARM has two types of DC modes. The first is the Horizontal Detection Contour 

(HDC) mode. In this mode, ALARM generates multiple, north to south straight-line, flight paths 

going from left to right across the radar site. The range and range increment along the flight path, 
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for which the target detection is determined, is supplied by the user.   The second mode is the 

Vertical Detection Contour (VDC) mode. In this mode the program produces Range-Height-Angle 

graphs representing radar detection in the vertical plane.  A single aircraft speed and altitude are 

entered and the aircraft is assumed to fly straight and level (pitch and roll can be specified).  

Actual aircraft radar cross section (RCS) target data and digitized terrain data for the radar 

location can be loaded for either mode. The model calculates the relative angular geometry from 

the radar to the target and looks up the corresponding RCS of the target. In both modes a target is 

detected if the processed target Signal-to-Noise (S/N) ratio exceeds the detector threshold (S/N). 

By repeating HDC runs over a range of altitudes defined by the user, a detection volume can be 

generated for the given radar against the given target. For VDC mode the angle is adjusted from 0-

360 degrees in increments defined by the user to generate the detection volume. 

For realistic ALARM scenarios, the run time required to generate a full coverage volume can be 

prohibitive because of the highly detailed models. One way to reduce simulation run times is to 

simplify the models through the application of model abstraction techniques. In this paper three 

simple abstraction techniques were applied to ALARM to reduce the run time followed by an 

application of a more sophisticated meta-modeling technique which generates simple polynomial 

models which can then be used to estimate the impact of more subtle parameters on the run time.  
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2.  MODEL ABSTRACTION TECHNIQUES 
 

Three model abstraction techniques were chosen and applied to estimate the effects of the 

simulation parameters on the run time performance of ALARM: 1) Dropping Model 

Components, Descriptive Variables, or Interaction Rules, 2) Coarsening the Ranges and 

Incremental Parameter Values of Descriptive Variables, and 3) Meta-modeling.  

 

2.1 Dropping Model Components, Descriptive Variables, and Interaction Rules  

 

The importance of model factors can vary depending on user interest. For example, at the 

engineering level very finely detailed modeling may be required, while less detailed analysis 

is required for a Campaign Level simulation. Since all model factors are not of equal 

importance, a good abstraction technique is to ignore some model components, descriptive 

variables, or interaction rules whose impact is negligible for a given user requirement or 

situation. This is similar to an engineering approximation and results in a reduction in the 

complexity of the model by eliminating model factors which least effect the simulation 

response of interest.  

 

What are the ALARM model factors that have the largest impact on run time? Based on 

domain expertise and experience there are two; they are the inclusion of digitized terrain and 

application clutter processing.   Table 1 shows the relationship between the simulation run 

time and (a) where the terrain is stored for processing on the Hard Drive (HD) or in Random 

Access Memory (RAM), (b) the inclusion of clutter processing (set to on or off),  and (c) the 

inclusion of terrain (set to on or off). The reflectivity of the terrain causes a portion of the 

radar transmitted power to be reflected back to the radar. This signal energy reflected from 

sources other than the target masks the radar’s ability to see the desired target signal. Clutter 

processing is a technique to filter out the clutter while passing the target signal on to the 

detector.  The filtering process used by ALARM is based on the Doppler effect.  The Doppler 

effect is a change in transmitted frequency which is perceived to have occurred by a receiver 

as a result of the existence of relative radial motion between the radar’s transmitted signal 

and the target.   The magnitude of the Doppler shift is directly proportional to the rate of 
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relative radial velocity between the radar and target.  Since terrain has little or no velocity, a 

returning signal can be filtered out based on its small relative Doppler shift.  

 

To fully illustrate the detection performance of ALARM it was evaluated in contour mode. 

Table 1 shows the impact of three ALARM components on the simulation run time: 1) the 

terrain switch, 2) the clutter processing switch and 3) the terrain data storage method. Two 

methods are available for storage and accessing the terrain data. This may be done from 

either a Hard Drive (HD) or from Random Access Memory (RAM).  Storing the terrain data 

in RAM, as opposed to the Hard Drive, results in an order of magnitude decrease in run times 

with no loss in the detection fidelity or detection volume; as evidenced by the relative times 

between row 1 and 2 of table 1. A comparison of rows 2 through 4 shows that another fifty 

percent reduction in the required run time results when the clutter switch, terrain switch or 

both are turned off.  Table 1 also indicates how terrain and clutter processing impact ALARM 

run time. First note that loading the terrain into RAM for clutter processing as opposed to 

processing the digitized terrain data directly from the hard drive has the largest impact in 

reducing the run time. The relative decrease is almost an order of magnitude.  Since the 

terrain is the dominant factor in generating clutter, turning off either of these switches 

reduces the run time by about a factor of fifty percent. This technique is useful for setting an 

upper bound on the radar’s detection capability. It is also useful for simulating the radar’s 

detection capability against high flying targets where clutter due to terrain effects is absent.    

 

However, turning off the terrain and hence eliminating clutter is unrealistic in the real world, 

except perhaps for a few special cases; such as a very calm sea state or very flat featureless 

terrain.  Therefore, terrain and clutter processing will be maintained and other abstraction 

techniques will be investigated to further reduce the run time.  
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TABLE 1 
 

Changing the resolution by Coarsening the Ranges and Incremental Values of 

Descriptive Variables 

 

Terrain 
Loaded 

CLUTTER
SW 

Terrain
SW 

Simulation 
Run Time 

(min) 

Relative  
Time (Sec) 

HD on on 186 min 1 
RAM on on 26 min 33 

sec 
0.14 

RAM on off 13 min 23 
sec 

.072 

RAM off on 13 min 10 
sec 

.071 

RAM off off 9 min 3 sec .048 
 

 Reducing the maximum value for ALARM factors and decreasing the simulation resolution 

by increasing the Incremental Values of ALARM factors can be as simple as a straight 

reduction in variable range or considering a reduced set of allowable values for the variables.  

Which ALARM factors impact the run time the most? From the results of table 1 it will be 

those factors that affect the clutter processing. These include both the terrain and clutter 

processing components and the capability of the processing hardware such as the processor 

speed, number of processors, and how the terrain data is stored on the HD or in RAM.  

ALARM performs a target detection calculation, which includes clutter processing, for each 

target position. How many target positions are there? It depends on the maximum range 

(RMAX) and range increment (RINC).  For the example presented in table 2 row 2 below the 

maximum radar range RMAX is set to 80 Kilometers and the range increment RINC to 500 

meters. This requires 1 detection calculation every 500 meters from 0-80 Kilometers or 160 

discrete target detection calculations for each flight path. To cover the total area each 

horizontal flight path is repeated at 500 meter increments from out to the maximum range 

again. This results in a total of 160 times 160 or 25,600 calculations for each altitude. To fill 

in the volume coverage, we repeat these calculations over an altitude range of (0-3200) feet at 

a resolution of 100 feet. Thus to determine the volume coverage for 80 square kilometers at 

500 meter resolution in azimuth and 100 feet in elevation requires about 800,000 detection 
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calculations. Clutter processing can be adjusted independently of the radar maximum range 

by setting the clutter maximum range to a smaller value or clutter resolution increment to a 

larger value.  This is logical since as the radar signal propagates outward in a straight line 

there will come a point at which the signal no longer intersects the earth (which curves 

downward).  Thus beyond this range there will be no clutter signal caused by terrain.  

 

 The effect of these factors on the simulation run time is presented in table 2. First, storing the 

terrain in RAM reduces the simulation execution time by almost a factor of ten.  Rows 2-6 

show how cutting the maximum radar range or clutter processing range in half or doubling 

the sampling increment results in cutting the simulation run time in half. Furthermore rows 7-

10 show how adjusting two or more factors simultaneously results in a reduction in the 

simulation run time by factor of four or more.  In addition, the run time can be reduced by 

about 60 percent each time the processor speed is doubled (see rows 11-12). Finally, by 

increasing the processor speed and distributing the simulation across multiple processors 

simultaneously the simulation time can be reduced from tens of minutes to less the ten 

minutes. Thus by increasing the processor speed, distributing the processing across multiple 

processors and intelligently adjusting parameters which impact detection volume and the 

density of sample points, a detection volume can be generated in several minutes instead of 

hours.   
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TABLE 2 

 

RUN TIME VS ALARM VARIABLES 

 

Time 
Min/Sec 

Terrain 
Storage 

R
M
A
X 
 

K
M 

Clutter 
MAX 
KM 

Range 
Inc. 

Meters 

Azimuth
Width 

Degrees

CPU  
Speed 
MHz 

No. 
Proc 

No. 
Alt 

Cuts

186’ HD 80 50 500 360 350 1 1 
26’ 33” RAM 80 50 500 360 350 1 1 
13’10” RAM 40 50 500 360 350 1 1 
14’ 9” RAM 80 25 500 360 350 1 1 
13’ 49” RAM 80 50 1000 360 350 1 1 
13’ 16” RAM 80 50 500 180 350 1 1 
4’ 48” RAM 80 25 1000 360 350 1 1 
1’29” RAM 80 50 500 20 350 1 1 
18” RAM 80 25 1000 20 350 1 1 
10” RAM 40 25 1000 20 350 1 1 
11’ RAM 80 50 500 360 700 1 1 
6’ RAM 80 50 500 360 1600 1 1 

11” RAM 80 50 500 360 1600 32 1 
5.6” RAM 80 50 500 360 1600 64 1 
3’ RAM 80 50 500 360 1600 64 32 
6’ RAM 80 50 500 360 1600 64 64 

1’ 7” RAM 80 25 1000 360 1600 64 64 
14” RAM 80 25 500 20 1600 64 64 

 

3.  ALARM META-MODEL DESIGN 
 

A meta-model, as defined by Caughlin [2 ], is a mathematical approximation of the system 

relationships, defined by another, more detailed model. The meta-model approximates the 

causal time dependent behavior of a complex simulation model, and allows assessment of 

individual factors on the performance of the simulation. A good meta-model should satisfy 

one or more of the following four characteristics.  First and most important, the meta-model 

should mirror the output of the original model to within some desired accuracy. Second, it 
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should maintain that accuracy over the range of interest. Third, the implementation should be 

simpler than the original model. Fourth, the computational time required to generate an 

output with the meta-model should be reduced.  

 

3.1 Meta-model techniques 

 

The ALARM meta-models presented here are based on factorial designs [3].  Factorial designs 

are based on polynomial expressions whose terms involve the set of input factors or variables 

that are carefully chosen by a model domain expert, or as determined by a sensitivity 

analysis.  For each factor chosen a range of levels (or values) is chosen. The values for each 

factor are applied to the simulation and the output is tabulated.  The simplest factorial designs 

use only two levels for each of ‘n’ input factors resulting in 2n unique combinations of input 

vectors.  Thus, for a design using four factors and two levels, 42 = 16 outputs are generated.  

The output chosen to demonstrate the factorial meta-model design for ALARM is the 

simulation run time. The four ALARM variables chosen to represent the meta-model are: the 

target altitude (x1), the number of Pulse Doppler (PD) filters (x2), the PD filter band width 

(x3), and the target velocity (x4). Several meta-models were generated using a set of test runs 

of the ALARM simulation.  Each meta-model was derived from the data generated by the 

ALARM simulation, and was used to capture the run time relationship imposed by those 

factors.  Table 3 lists the values and ranges of each of the four factors used in the generation 

of the meta-models.  The comparison of the meta-models was based on two statistics 

measuring the goodness of fit. For each meta-model the output is directly compared with the 

actual ALARM model output.  A general overview of the ALARM meta-model designs is 

presented next, followed by a description of the test cases used in the evaluation of the meta-

models. 

 

A full factorial model was initially chosen based on the requirement that each of the four 

factors has two input levels. In order to determine which interactions among the four factors 

were statistically the most significant, a normal probability plot of the factor effects was 

applied and an Analysis of Variance (ANOVA) table was used to confirm the results [4]. The 

factors and interactions that were found significant are included in the general form of the 

meta-model below: 
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y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b23x2x3 + ε 

TABLE 3 
ALARM META-MODEL DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The coefficients were determined using a least squares estimation. The method of least 

squares requires that a polynomial be fitted to the set of response data points such that the 

sum of the squares of the distance of the points to the fitted line is minimized. The general 

form of the meta-model using this solution yields: 

 
 

ý = 81.084 + 0.012546 x1 - 0.47921 x2 - 0.056430 x3 + 0.00071685 x1x2 + 0.014898 x2x3 
 

(Meta-model 1) 
 
 
Least Squares Estimation is based on the assumption that the data is from a normal 

distribution. However, plotting the residuals on a normal probability plot revealed that the 

data is not normal. Therefore, to normalize the data a Box-Cox Transformation was applied 

to the data. The form of the transformed meta-model is  

 

Tgt Alt # PDF Filt BW Tgt Speed Time (sec)
100 8 78.125 300 82.69
100 8 78.125 150 85.71
100 8 156.25 300 85.73
100 8 156.25 150 91.6
100 64 78.125 300 129.77
100 64 78.125 150 129.53
100 64 156.25 300 193.14
100 64 156.25 150 193.07
500 8 78.125 300 89.19
500 8 78.125 150 92.96
500 8 156.25 300 92.84
500 8 156.25 150 99.99
500 64 78.125 300 146.24
500 64 78.125 150 146.55
500 64 156.25 300 223.08
500 64 156.25 150 223.12
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ý = sqrt(2*(4155.0 + 0.36180 x1 - 156.38 x2 - 15.778 x3 + 0.16140 x1x2 + 2.6877 x2x3) + 1). 

 
(Meta-model 2) 

 
 
If a model is to account for an nth-order effect in a factor, then the experimental design must 

have n + 1 different levels in that factor. Since a 24 factorial design was used, the data only 

had two levels (-1 and 1, or low and high) and could only account for first-order effects. In 

order to determine whether the model had some quadrature that was not being accounted for, 

the residuals were plotted against the predicted values. The points on this plot suggested a 

violation of linearity (fitting data that are nonlinearly related with a linear model).  

 

The next step was to make a model that contained squared terms in order to account for the 

quadrature. A Central Composite Design (CCD) was chosen. A CCD uses the data from the 

factorial model, a center run, and axial points (all of the factors are held at the center while 

one is set at a positive and negative distance from the center). With the central composite 

design, there are three levels (-1, 0, and 1, or low, center, and high) so the model can estimate 

second-order single-factor effects (curvature in each factor). In this case a meta-model with 

the axial points scaled at +1 and -1 was developed. The coefficients in the CCD models were 

solved for in the same manner, using least squares estimation: 

 
ý = 221.04 - 0.095502 x1 - 0.65088 x2 - 0.37889 x3 - 1.0365 x4 - 0.000060268 x1x2 + 
0.0000035200 x1x3  - 0.0000018333 x1x4 + 0.011941 x2x3 + 0.000091964 x2x4 - 0.00026161 
x3x4 + 0.0000062400 x1x2x3 - 0.00000022917 x1x2x4 - 0.00000014263 x1x3x4 + 
0.0000037143 x2x3x4 + 0.0000000036952 x1x2x3x4 + 0.00018459 x1² + 0.0045198 x2

2 + 
0.0015457 x3

2 + 0.0022895 x4
2 

(Meta-model 3) 
 

A normal probability plot of the residuals from meta-model 3 revealed that a transformation 

on the data was needed. The form of the transformed meta-model is: 

ý = (-2*( 0.49996 - 1.4918e-008 x1 + 1.0413e-006 x2 +    3.9367e-007 x3 - 5.4993e-007 x4 - 
4.6875e-011 x1x2 - 2.0937e-011 x1x3  - 4.7619e-012 x1x4 + 1.1949e-009 x2x3 + 2.2798e-010 
x2x4 - 3.3685e-010 x3x4 - 1.3429e-012 x1x2x3 - 2.9762e-014 x1x2x4 + 8.4419e-014 x1x3x4 + 
5.0667e-012 x2x3x4 - 6.8571e-016 x1x2x3x4 + 7.2195e-011 x1² - 7.4390e-009 x2

2 - 1.0336e-
009 x3

2 + 1.1907e-009 x4
2

 ) + 1) -1/2 
 

(Meta-model 4) 
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The outliers in the residual plots of both meta-models 3 and 4 corresponded to factor x1 and 

factor x4 being held constant and x2 and x3 changing.  

TABLE 4 
META-MODELS LEVELS OF EFFECTIVENESS 

 
MAE R2 

Meta-
model 1 

2.89 99.63%

Meta-
model 2 

4.22 99.09%

Meta-
model 3 

3.88 98.04%

Meta-
model 4 

1.05 99.88%

 
 
4.  RESULTS AND CONCLUSIONS 
 

The test statistics R2 and MAE for each test case, shown in Table 4, provide insight into the 

behavior of the meta-models over varied input data selections. The R2 statistic describes how 

much of the variation is actually attributed to the model and the MAE statistic describes, on 

average, how far off the estimates are from the model. The fidelity of the meta-models was 

determined by comparing their run times against ALARM run times. Based on these two 

statistics, the best meta-model to estimate the simulation run time would be meta-model 4, 

which is a transformed Central Composite Design (CCD) model. This CCD model takes into 

account second-order single-factor effects (curvature in factors) and the transformation 

adjusts the data points so the distribution is Gaussian.   

 

In order to compare the meta-models with test points, random values were used for the inputs 

in the ALARM system. The ALARM responses were compared to the meta-model 

estimations for the same data. The statistics used to analyze these test points were the MAE, 

which was previously described, and a percent accuracy. “Average Percent Accuracy” is the 

average of the percent of the simulation run time within which the meta-model correctly 

estimated within. “Percent Accuracy Within 10%” is the percentage of the test points that 

were estimated within 10% of the actual simulation run time. “Percent Accuracy Within 5%” 
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is the percentage of the test points that were estimated within 5%. Below is a chart of the 

results: 

TABLE 5 
MEASURES OF META-MODEL ACCURACY 

 
  

MAE 
Average 
Percent 

Accuracy

Percent 
Accuracy 

Within 
10% 

Percent 
Accuracy 

Within 
5% 

Meta-
model 1 

16.9 14.6% 50% 20% 

Meta-
model 2 

24.1 16.0% 30% 20% 

Meta-
model 3 

10.6 8.2% 90% 40% 

Meta-
model 4 

9.82 7.7% 80% 50% 

 
 
Points corresponding to factor x2 and factor x3 stood out in most of the residual plots, and a 

meta-model that contained only these two factors estimated the simulation run time fairly 

well. Therefore, it is safe to assume that factor x2 and factor x3 (the number of pulse Doppler 

filters and the filter bandwidth) have the most effect, of the chosen factors, on the simulation 

run time. 

One measure in determining the meta-models’ ability to pattern the behavior of the ALARM 

benchmark model involves comparing test case 2 (transformed or normalized ) with test case 

1.  For each meta-model the comparison of the AARE (and R2) statistics compares favorably 

and the differences that resulted were not significant.  These comparisons support the 

inference that the meta-models pattern the behavior of the benchmark model for input values 

that are within the chosen input data ranges that were used in designing the meta-model itself. 

 
5.  FUTURE META-MODEL DEVELOPMENT AND ANALYSES 
 

The meta-model analyses could be expanded in the following manner: 

1. Perform additional simulations, similar to test cases 3 and 4, to determine a more accurate 

estimate of the test statistics on the meta-models.  The intent would be to determine 
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statistics that were not highly dependent on the choice of the subset of input data values 

that were used to generate the meta-model. 

2. Perform sensitivity analyses to determine the level of influence that each input factor has 

on the behavior of the model.  This would provide more insight regarding the meta-model 

itself. 

3. Incorporate different types of meta-models, such as those based on adaptive neural 

networks or higher level CCD designs, into the baseline that was established within this 

paper.  Through in-depth analyses more robust meta-models could be identified, along 

with the general rules of thumb to exploit the strengths of each model. 

 
6.  SUMMARY 
 
This paper focused on applying model abstraction techniques to ALARM; a DoD prototype 

radar model for simulating the volume detection capability against low flying targets within a 

digitally simulated environment. Due to the complexity of these models it is difficult to 

capture and assess the relationship between the parameters and the performance of the 

simulation. Under this effort ALARM parameters were modified and/or deleted and the 

impact on the simulation run time assessed.  In addition, several meta-models were developed 

and used to assess the impact of ALARM parameters on the simulation run time. The impact 

of the terrain switch, the clutter processing switch, and the terrain data storage method, on the 

simulation run time were evaluated.  Several ALARM meta-models, based on factorial 

designs, were developed and applied.  The meta-model test cases show that the run time 

execution can be estimated using the meta-models for a given target altitude, velocity, and set 

of Doppler Filters and bandwidth. The test case results indicated a strong correlation between 

the simulation run times predicted by the meta-models and run time for the actual ALARM 

simulations. This paper establishes a baseline for ALARM from which additional meta-

models can be compared and analyzed to determine the effect of ALARM factors on the 

simulation run time. 
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